Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.968
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2318155121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38602917

RESUMO

Tissue development occurs through a complex interplay between many individual cells. Yet, the fundamental question of how collective tissue behavior emerges from heterogeneous and noisy information processing and transfer at the single-cell level remains unknown. Here, we reveal that tissue scale signaling regulation can arise from local gap-junction mediated cell-cell signaling through the spatiotemporal establishment of an intermediate-scale of transient multicellular communication communities over the course of tissue development. We demonstrated this intermediate scale of emergent signaling using Ca2+ signaling in the intact, ex vivo cultured, live developing Drosophila hematopoietic organ, the lymph gland. Recurrent activation of these transient signaling communities defined self-organized signaling "hotspots" that gradually formed over the course of larva development. These hotspots receive and transmit information to facilitate repetitive interactions with nonhotspot neighbors. Overall, this work bridges the scales between single-cell and emergent group behavior providing key mechanistic insight into how cells establish tissue-scale communication networks.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Hematopoese , Transdução de Sinais , Comunicação Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
2.
Elife ; 122024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652107

RESUMO

Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.


Assuntos
Diferenciação Celular , Redes Reguladoras de Genes , Diferenciação Celular/genética , Animais , Hematopoese/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Desenvolvimento Embrionário/genética , Transdiferenciação Celular/genética , Humanos
3.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667319

RESUMO

Platelets are the terminal progeny of megakaryocytes, primarily produced in the bone marrow, and play critical roles in blood homeostasis, clotting, and wound healing. Traditionally, megakaryocytes and platelets are thought to arise from multipotent hematopoietic stem cells (HSCs) via multiple discrete progenitor populations with successive, lineage-restricting differentiation steps. However, this view has recently been challenged by studies suggesting that (1) some HSC clones are biased and/or restricted to the platelet lineage, (2) not all platelet generation follows the "canonical" megakaryocytic differentiation path of hematopoiesis, and (3) platelet output is the default program of steady-state hematopoiesis. Here, we specifically investigate the evidence that in vivo lineage tracing studies provide for the route(s) of platelet generation and investigate the involvement of various intermediate progenitor cell populations. We further identify the challenges that need to be overcome that are required to determine the presence, role, and kinetics of these possible alternate pathways.


Assuntos
Plaquetas , Diferenciação Celular , Linhagem da Célula , Células-Tronco Hematopoéticas , Animais , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Plaquetas/citologia , Plaquetas/metabolismo , Camundongos , Megacariócitos/citologia , Megacariócitos/metabolismo , Hematopoese
4.
Elife ; 122024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573813

RESUMO

Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.


Assuntos
Glicólise , Fosfofrutoquinase-2 , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Anaerobiose , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Fosforilação Oxidativa , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
5.
Yi Chuan ; 46(4): 319-332, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632094

RESUMO

Granulopoiesis is a highly ordered and precisely regulated process in which hematopoietic-related transcription factors play crucial roles. These transcription factors form complex regulatory networks through interactions with their co-factors or with each other, and anomalies in these networks can lead to the onset of leukemia. While the structures and functions of dozens of transcription factors involved in this process have been extensively studied, research on the regulatory relationships between these factors remains relatively limited. PU.1 and cMYB participate in multiple stages of neutrophil development, and their abnormalities are often associated with hematologic disorders. However, the regulatory relationship between these factors in vivo and their mode of interaction remain unclear. In this study, zebrafish models with cMyb overexpression (cmybhyper) and Pu.1 deficiency (pu.1G242D/G242D) were utilized to systematically investigate the interaction between Pu.1 and cMyb during granulopoiesis through whole-mount in situ hybridization, qRT-PCR, fluorescence reporting systems, and rescue experiments. The results showed a significant increase in cmyb expression in neutrophils of the pu.1G242D/G242D mutant, while there was no apparent change in pu.1 expression in cmybhyper. Further experiments involving injection of morpholino (MO) to decrease cmyb expression in pu.1G242D/G242D mutants, followed by SB and BrdU staining to assess neutrophil quantity and proliferation, revealed that reducing cmyb expression could rescue the abnormal proliferation phenotype of neutrophils in the pu.1G242D/G242D mutant. These findings suggest that Pu.1 negatively regulates the expression of cMyb during neutrophil development. Finally, through the construction of multi-site mutation plasmids and a fluorescent reporter system, confirmed that Pu.1 directly binds to the +72 bp site in the cmyb promoter, exerting negative regulation on its expression. In conclusion, this study delineates that Pu.1 participates in neutrophil development by regulating cmyb expression. This provides new insights into the regulatory relationship between these two factors and their roles in diseases.


Assuntos
Neutrófilos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Neutrófilos/metabolismo , Fatores de Transcrição/genética , Hematopoese , Regiões Promotoras Genéticas
6.
PLoS One ; 19(4): e0300623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564577

RESUMO

Regulation of protein synthesis is a key factor in hematopoietic stem cell maintenance and differentiation. Rio-kinase 2 (RIOK2) is a ribosome biogenesis factor that has recently been described an important regulator of human blood cell development. Additionally, we have previously identified RIOK2 as a regulator of protein synthesis and a potential target for the treatment of acute myeloid leukemia (AML). However, its functional relevance in several organ systems, including normal hematopoiesis, is not well understood. Here, we investigate the consequences of RIOK2 loss on normal hematopoiesis using two different conditional knockout mouse models. Using competitive and non-competitive bone marrow transplantations, we demonstrate that RIOK2 is essential for the differentiation of hematopoietic stem and progenitor cells (HSPCs) as well as for the maintenance of fully differentiated blood cells in vivo as well as in vitro. Loss of RIOK2 leads to rapid death in full-body knockout mice as well as mice with RIOK2 loss specific to the hematopoietic system. Taken together, our results indicate that regulation of protein synthesis and ribosome biogenesis by RIOK2 is essential for the function of the hematopoietic system.


Assuntos
Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Animais , Humanos , Camundongos , Transplante de Medula Óssea , Diferenciação Celular/fisiologia , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Camundongos Knockout
7.
BMC Complement Med Ther ; 24(1): 158, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610025

RESUMO

BACKGROUND: A triplet chemotherapy regimen of docetaxel, cisplatin, and 5-fluorouracil (TPF) is used to treat head and neck squamous cell carcinoma; however, it is toxic to bone marrow mesenchymal stem cells (BMSCs). We previously demonstrated that Ganoderma spore lipid (GSL) protect BMSCs against cyclophosphamide toxicity. In this study, we investigated the protective effects of GSL against TPF-induced BMSCs and hematopoietic damage. METHODS: BMSCs and C57BL/6 mice were divided into control, TPF, co-treatment (simultaneously treated with GSL and TPF for 2 days), and pre-treatment (treated with GSL for 7 days before 2 days of TPF treatment) groups. In vitro, morphology, phenotype, proliferation, senescence, apoptosis, reactive oxygen species (ROS), and differentiation of BMSCs were evaluated. In vivo, peripheral platelets (PLTs) and white blood cells (WBCs) from mouse venous blood were quantified. Bone marrow cells were isolated for hematopoietic colony-forming examination. RESULTS: In vitro, GSL significantly alleviated TPF-induced damage to BMSCs compared with the TPF group, recovering their morphology, phenotype, proliferation, and differentiation capacity (p < 0.05). Annexin V/PI and senescence-associated ß-galactosidase staining showed that GSL inhibited apoptosis and delayed senescence in TPF-treated BMSCs (p < 0.05). GSL downregulated the expression of caspase-3 and reduced ROS formation (p < 0.05). In vivo, GSL restored the number of peripheral PLTs and WBCs and protected the colony-forming capacity of bone marrow cells (p < 0.05). CONCLUSIONS: GSL efficiently protected BMSCs from damage caused by TPF and recovered hematopoiesis.


Assuntos
Antineoplásicos , Ganoderma , Células-Tronco Mesenquimais , Animais , Camundongos , Camundongos Endogâmicos C57BL , Docetaxel , Cisplatino , Espécies Reativas de Oxigênio , Esporos Fúngicos , Hematopoese , Fluoruracila , Lipídeos
8.
Sci Rep ; 14(1): 5085, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429469

RESUMO

Vasopressin is a pleiotropic hormone that controls body fluid homeostasis. Vasopressin has also been proposed to be involved in erythropoiesis, thrombocyte activity and inflammation. However, whether increasing vasopressin is associated with changes in hematopoietic markers is not known. To evaluate this gap of knowledge we measured the vasopressin marker copeptin and markers of erythropoiesis (erythrocyte count, hemoglobin (Hb), red blood cell distribution width (RDW), mean corpuscular volume (MCV), erythrocyte volume fraction (EVF)), leukocyte count (total count, lymphocytes, neutrophils) and thrombocyte count in 5312 participants from the Swedish CArdioPulmonary bioImage Study (SCAPIS). The associations between increasing copeptin tertile and the hematopoietic markers were analyzed in multivariate linear regression analyses. We found that increasing copeptin tertile was significantly (p < 0.001) associated with increasing erythrocytes, RDW, EVF, Hb, leukocytes and neutrophils after adjustment for age, sex, current smoking, prevalent diabetes, hypertension, creatinine, body mass index and physical activity. Increasing copeptin tertile was, however, not associated with change in MCV, lymphocyte or thrombocyte count. In conclusion, we found that increasing copeptin levels are positively associated with markers of erythropoiesis and leukocyte count in the general population. These results warrant further research on possible mechanistic effects of vasopressin on hematopoiesis.


Assuntos
Índices de Eritrócitos , Eritrócitos , Hematopoese , Vasopressinas , Humanos , Eritropoese , Hemoglobinas , Vasopressinas/metabolismo
9.
Lupus Sci Med ; 11(1)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471723

RESUMO

OBJECTIVES: In SLE, deregulation of haematopoiesis is characterised by inflammatory priming and myeloid skewing of haematopoietic stem and progenitor cells (HSPCs). We sought to investigate the role of extramedullary haematopoiesis (EMH) as a key player for tissue injury in systemic autoimmune disorders. METHODS: Transcriptomic analysis of bone marrow (BM)-derived HSPCs from patients with SLE and NZBW/F1 lupus-prone mice was performed in combination with DNA methylation profile. Trained immunity (TI) was induced through ß-glucan administration to the NZBW/F1 lupus-prone model. Disease activity was assessed through lupus nephritis (LN) histological grading. Colony-forming unit assay and adoptive cell transfer were used to assess HSPCs functionalities. RESULTS: Transcriptomic analysis shows that splenic HSPCs carry a higher inflammatory potential compared with their BM counterparts. Further induction of TI, through ß-glucan administration, exacerbates splenic EMH, accentuates myeloid skewing and worsens LN. Methylomic analysis of BM-derived HSPCs demonstrates myeloid skewing which is in part driven by epigenetic tinkering. Importantly, transcriptomic analysis of human SLE BM-derived HSPCs demonstrates similar findings to those observed in diseased mice. CONCLUSIONS: These data support a key role of granulocytes derived from primed HSPCs both at medullary and extramedullary sites in the pathogenesis of LN. EMH and TI contribute to SLE by sustaining the systemic inflammatory response and increasing the risk for flare.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , beta-Glucanas , Humanos , Animais , Camundongos , Hematopoese , Células-Tronco Hematopoéticas
10.
Nat Med ; 30(3): 810-817, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454125

RESUMO

Age is a predominant risk factor for acute kidney injury (AKI), yet the biological mechanisms underlying this risk are largely unknown. Clonal hematopoiesis of indeterminate potential (CHIP) confers increased risk for several chronic diseases associated with aging. Here we sought to test whether CHIP increases the risk of AKI. In three population-based epidemiology cohorts, we found that CHIP was associated with a greater risk of incident AKI, which was more pronounced in patients with AKI requiring dialysis and in individuals with somatic mutations in genes other than DNMT3A, including mutations in TET2 and JAK2. Mendelian randomization analyses supported a causal role for CHIP in promoting AKI. Non-DNMT3A-CHIP was also associated with a nonresolving pattern of injury in patients with AKI. To gain mechanistic insight, we evaluated the role of Tet2-CHIP and Jak2V617F-CHIP in two mouse models of AKI. In both models, CHIP was associated with more severe AKI, greater renal proinflammatory macrophage infiltration and greater post-AKI kidney fibrosis. In summary, this work establishes CHIP as a genetic mechanism conferring impaired kidney function recovery after AKI via an aberrant inflammatory response mediated by renal macrophages.


Assuntos
Injúria Renal Aguda , Hematopoiese Clonal , Animais , Camundongos , Humanos , Hematopoiese Clonal/genética , Hematopoese/genética , Fatores de Risco , Envelhecimento/genética , Injúria Renal Aguda/genética , Mutação/genética
11.
Nature ; 627(8005): 839-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509363

RESUMO

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos , Envelhecimento/fisiologia , Infecções Bacterianas/patologia , Infecções Bacterianas/fisiopatologia , Vasos Sanguíneos/citologia , Linhagem da Célula , Eritropoese , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemorragia/patologia , Hemorragia/fisiopatologia , Linfopoese , Megacariócitos/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Mielopoese , Crânio/irrigação sanguínea , Crânio/patologia , Crânio/fisiopatologia , Esterno/irrigação sanguínea , Esterno/citologia , Esterno/metabolismo , Estresse Fisiológico/fisiologia , Tíbia/irrigação sanguínea , Tíbia/citologia , Tíbia/metabolismo
12.
Cytokine Growth Factor Rev ; 76: 22-29, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38472041

RESUMO

The bone marrow is a haven for hematopoietic and non-hematopoietic cells, creating complex micro-anatomical regions called niches. These distinct niches all participate in an intricate orchestra of cellular interactions that regulates the hematopoietic stem cell and its progenies. In this review, we provide a detailed description of the three most well-known bone marrow niches and their participation in hematopoiesis. We use pre-clinical data, including different in vitro and in vivo studies to discuss how a group of proteins called Semaphorins could potentially modulate both hematopoietic and non-hematopoietic cells, establishing links between the niches, semaphorins, and hematopoietic regulation. Thus, here we provide a deep dive into the inner functioning of the bone marrow and discuss the overarching implications that semaphorins might have on blood formation.


Assuntos
Medula Óssea , Semaforinas , Humanos , Diferenciação Celular/fisiologia , Semaforinas/metabolismo , Nicho de Células-Tronco/fisiologia , Células-Tronco Hematopoéticas , Hematopoese/fisiologia , Células da Medula Óssea
13.
Medicine (Baltimore) ; 103(12): e37487, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518015

RESUMO

GATA transcriptional factors are zinc finger DNA binding proteins that regulate transcription during development and cell differentiation. The 3 important GATA transcription factors GATA1, GATA2 and GATA3 play essential role in the development and maintenance of hematopoietic systems. GATA1 is required for the erythroid and Megakaryocytic commitment during hematopoiesis. GATA2 is crucial for the proliferation and survival of early hematopoietic cells, and is also involved in lineage specific transcriptional regulation as the dynamic partner of GATA1. GATA3 plays an essential role in T lymphoid cell development and immune regulation. As a result, mutations in gene encoding the GATA transcription factor or alteration in the protein expression level or their function have been linked to a variety of human haematological malignancies. This review presents a summary of recent understanding of how the disrupted biological function of GATA may contribute to hematologic diseases.


Assuntos
Fatores de Transcrição GATA , Neoplasias Hematológicas , Humanos , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica , Diferenciação Celular , Hematopoese/genética , Neoplasias Hematológicas/genética
15.
Commun Biol ; 7(1): 374, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548886

RESUMO

The transcription factor Growth Factor Independence 1B (GFI1B) recruits Lysine Specific Demethylase 1 A (LSD1/KDM1A) to stimulate gene programs relevant for megakaryocyte and platelet biology. Inherited pathogenic GFI1B variants result in thrombocytopenia and bleeding propensities with varying intensity. Whether these affect similar gene programs is unknow. Here we studied transcriptomic effects of four patient-derived GFI1B variants (GFI1BT174N,H181Y,R184P,Q287*) in MEG01 megakaryoblasts. Compared to normal GFI1B, each variant affected different gene programs with GFI1BQ287* uniquely failing to repress myeloid traits. In line with this, single cell RNA-sequencing of induced pluripotent stem cell (iPSC)-derived megakaryocytes revealed a 4.5-fold decrease in the megakaryocyte/myeloid cell ratio in GFI1BQ287* versus normal conditions. Inhibiting the GFI1B-LSD1 interaction with small molecule GSK-LSD1 resulted in activation of myeloid genes in normal iPSC-derived megakaryocytes similar to what was observed for GFI1BQ287* iPSC-derived megakaryocytes. Thus, GFI1B and LSD1 facilitate gene programs relevant for megakaryopoiesis while simultaneously repressing programs that induce myeloid differentiation.


Assuntos
Hematopoese , Megacariócitos , Humanos , Megacariócitos/metabolismo , Diferenciação Celular/genética , Hematopoese/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo
16.
Elife ; 132024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526524

RESUMO

During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.


Assuntos
Hematopoese , Macrófagos , Animais , Camundongos , Hematopoese/genética , Células-Tronco Hematopoéticas , Diferenciação Celular , Eritropoese , Fígado , Nicho de Células-Tronco/genética
17.
Stem Cell Reports ; 19(4): 486-500, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38458190

RESUMO

Maintenance of hematopoietic stem cell (HSC) function in the niche is an orchestrated event. Osteomacs (OM) are key cellular components of the niche. Previously, we documented that osteoblasts, OM, and megakaryocytes interact to promote hematopoiesis. Here, we further characterize OM and identify megakaryocyte-induced mediators that augment the role of OM in the niche. Single-cell mRNA-seq, mass spectrometry, and CyTOF examination of megakaryocyte-stimulated OM suggested that upregulation of CD166 and Embigin on OM augment their hematopoiesis maintenance function. CD166 knockout OM or shRNA-Embigin knockdown OM confirmed that the loss of these molecules significantly reduced the ability of OM to augment the osteoblast-mediated hematopoietic-enhancing activity. Recombinant CD166 and Embigin partially substituted for OM function, characterizing both proteins as critical mediators of OM hematopoietic function. Our data identify Embigin and CD166 as OM-regulated critical components of HSC function in the niche and potential participants in various in vitro manipulations of stem cells.


Assuntos
Células-Tronco Hematopoéticas , Megacariócitos , Animais , Camundongos , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Megacariócitos/metabolismo , Osteoblastos/metabolismo , Nicho de Células-Tronco/fisiologia , Regulação para Cima , Molécula de Adesão de Leucócito Ativado/metabolismo
18.
Stem Cell Reports ; 19(4): 469-485, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38518784

RESUMO

The histone lysine acetyltransferase KAT6B (MYST4, MORF, QKF) is the target of recurrent chromosomal translocations causing hematological malignancies with poor prognosis. Using Kat6b germline deletion and overexpression in mice, we determined the role of KAT6B in the hematopoietic system. We found that KAT6B sustained the fetal hematopoietic stem cell pool but did not affect viability or differentiation. KAT6B was essential for normal levels of histone H3 lysine 9 (H3K9) acetylation but not for a previously proposed target, H3K23. Compound heterozygosity of Kat6b and the closely related gene, Kat6a, abolished hematopoietic reconstitution after transplantation. KAT6B and KAT6A cooperatively promoted transcription of genes regulating hematopoiesis, including the Hoxa cluster, Pbx1, Meis1, Gata family, Erg, and Flt3. In conclusion, we identified the hematopoietic processes requiring Kat6b and showed that KAT6B and KAT6A synergistically promoted HSC development, function, and transcription. Our findings are pertinent to current clinical trials testing KAT6A/B inhibitors as cancer therapeutics.


Assuntos
Neoplasias Hematológicas , Hematopoese , Camundongos , Animais , Diferenciação Celular/genética , Células-Tronco Hematopoéticas , Histona Acetiltransferases/genética
19.
Nat Immunol ; 25(4): 590-591, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514889

Assuntos
Hematopoese , Humanos
20.
Exp Mol Med ; 56(3): 549-558, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443597

RESUMO

Hematopoiesis can occur outside of the bone marrow during inflammatory stress to increase the production of primarily myeloid cells at extramedullary sites; this process is known as extramedullary hematopoiesis (EMH). As observed in a broad range of hematologic and nonhematologic diseases, EMH is now recognized for its important contributions to solid tumor pathology and prognosis. To initiate EMH, hematopoietic stem cells (HSCs) are mobilized from the bone marrow into the circulation and to extramedullary sites such as the spleen and liver. At these sites, HSCs primarily produce a pathological subset of myeloid cells that contributes to tumor pathology. The EMH HSC niche, which is distinct from the bone marrow HSC niche, is beginning to be characterized. The important cytokines that likely contribute to initiating and maintaining the EMH niche are KIT ligands, CXCL12, G-CSF, IL-1 family members, LIF, TNFα, and CXCR2. Further study of the role of EMH may offer valuable insights into emergency hematopoiesis and therapeutic approaches against cancer. Exciting future directions for the study of EMH include identifying common and distinct EMH mechanisms in cancer, infectious diseases, and chronic autoimmune diseases to control these conditions.


Assuntos
Hematopoese Extramedular , Neoplasias , Humanos , Hematopoese , Células-Tronco Hematopoéticas , Medula Óssea , Doença Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...